Fractional Charge and Spectral Asymmetry in 1-d: a Closer Look*

نویسندگان

  • RICHARD BLANKENBECLER
  • DANIEL BOYANOVSKY
چکیده

The physics of charge fractionalization is studied using a simple and physical approach. The normal ordered charge is related to the Atiyah-Patodi-Singer invariant, and the physical interpretation of the spectral asymmetry is clarified in the presence of a continuous spectrum. By introducing the quantity B(E) which is a ratio of Jost-type determinants we relate the asymmetry to the phase and zeros or poles of B(E). The fractional part of the charge is determined by the high energy behavior of the phase and the integer part is related to the spectral flow. We give simple examples showing that only the fractional part of the charge is a topological invariant; the integer part is determined by local properties of the background fields. Submitted to Physical Review D * Work eupported by the Department of Energy, contract DE AC03 76SF00515

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral asymmetry and supersymmetry

Fractional charges, and in particular the spectral asymmetry η of certain Dirac operators , can appear in the central charge of supersymmetric field theories. This yields unexpected analyticity constraints on η from which classic results can be recovered in an elegant way. The method could also be applied in the context of string theory.

متن کامل

Application of high-order spectral method for the time fractional mobile/immobile equation

In this paper, a numerical efficient method is proposed for the solution of time fractional mobile/immobile equation. The fractional derivative of equation is described in the Caputo sense. The proposed method is based on a finite difference scheme in time and Legendre spectral method in space. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of ord...

متن کامل

A Numerical Solution of Fractional Optimal Control Problems Using Spectral Method and Hybrid Functions

In this paper‎, ‎a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly‎. ‎First‎, ‎the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs)‎. ‎Then‎, ‎the unknown functions are approximated by the hybrid functions‎, ‎including Bernoulli polynomials and Block-pulse functions based o...

متن کامل

The spectral iterative method for Solving Fractional-Order Logistic ‎Equation

In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...

متن کامل

Convergence analysis of spectral Tau method for fractional Riccati differential equations

‎In this paper‎, ‎a spectral Tau method for solving fractional Riccati‎ ‎differential equations is considered‎. ‎This technique describes‎ ‎converting of a given fractional Riccati differential equation to a‎ ‎system of nonlinear algebraic equations by using some simple‎ ‎matrices‎. ‎We use fractional derivatives in the Caputo form‎. ‎Convergence analysis of the proposed method is given an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998